What is 3
Finite State Machine?

And why should | care?



What does Wikipedia say?

A Finite State Machine is a mathematical model of computation used
to design both computer programs and sequential logic circuits. It is
conceived as an abstract machine that can be in one of a finite number
of states. The machine is in only one state at a time; the state it is in at
any given time is called the current state. It can change from one state
to another when initiated by a triggering event or condition; this is
called a transition. A particular FSM is defined by a list of its states, and
the triggering condition for each transition.



Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Mathematical model. (Way too high brow)
Used to design/write computer programs. (Sounds promising)

Used to design/write sequential logic circuits. (FPGA code)



Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Abstract machine is a fancy way to say ‘programming tool’
Finite is better than infinite! We have a chance to code a finite number of things.
In only one state at a time. No quantum physics here!

Can change from one state to another. Would not be much use if it was stuck!



Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Transition; What has to happen to go from one state to another.

An FSM is defined by its states and transitions. Clear as mud.



Simpler Definition

A Finite State Machine is a concept/tool that can aid in writing
computer programs or FPGA logic. It is a tool that can be in only one
state at a time (the current state). It can change from one state to
another when some triggering event or transition occurs. You execute
your code on each transition.



Simplest definition

* A Finite State Machine is a way to implement in software some types
of flowcharts.
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An traditional example

You need to write a routine that will read in a series of
characters looking for a legal floating point number. Some
good examples are:

1.0, +2.0, -3.0, +0.004, -0.0005, +1e6, -2.E03, -4e-005
Some bad examples are:
.,-,a.3,3.4a,3..0,93.4,+1,E3,1.2E3.2

The processing of bytes stops when
1) You run out of characters in the string
2) You find a character that does not match a number.



How to you start to write this?

If this is the first character and it is not legal, return an error
if (nChar == 1) and (c=="+") or (c=="-’) or ((c>="0") and (c<="9’)) or (c==")
If the first character is a + sign then the whole number is positive
if (nChar==1) and (c=="+') sign = +1
If the first character is a - sign then the whole number is negative
if (nChar==1) and (c=="-") sign = -1
If the first character is a *’ than the number is positive and we need to start a
fraction
if (nChar==1) and (c=="") fraction = true

If the first character is a number, then we have a positive number and we need to
start a whole number.

if (nChar==1) and ((c>="0’) and (c<=9’)) {sigh=+1; fraction = false}
If the seconds character is (OMG, there must be a million combinations!)
if (nChar==2) and ARGHHHHHHHHH!



Floating Point Number Flowchart
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So how do you turn this into code?

SKIPPING SIGN OF LEADING ZEROS LEADING ZEROS MANTISSA
WHITESPACES NUMBER OF MANTISSA OF FRAC. PART INT PART

non-whitespace

EXPONENT EXPONENT EXPONENT MANTISSA
LEADING ZEROS SIGN FRAC. PART



FSM Code Template

Routine FSM
State = 0; (And other initializations)
Do forever

do common stuff;
switch (state):
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
end switch
End forever
End Routine



Crude implementation of floating point parser

Routine TextToFloat(string)
State = 0; sign = 1; whole= 0; fraction=0
Do forever
c = getNextCharFromString()
switch (state):

case 0: Do Stuff; break; // Skipping leading whitespace
case 1: Do Stuff; break; // Sign of number

case 2: Do Stuff; break; // Leading zeros of mantissa
case 3: Do Stuff; break; // Fractional leading zeros
case 4: Do Stuff; break; // Integer part

case 5: Do Stuff; break; // Fractional part

case 6: Do Stuff; break; // Exponent sign

case 7: Do Stuff; break; // Exponent leading zeros
case 8: Do Stuff; break; // Exponent

case 9: Do Stuff; break; // Stop

default: ASSERT(); break; // Should never get here!
End Switch

End forever

End Routine



Skipping leading whitespace

case O:

if (c == <space>) or (c == <tab>)
State = 0; // No change

else
pushCharBackToString(c);
State = 1; // Sign of number

endif

break



Sign of number (Digit, +, -, EOS, or other)

case 1:
if (c=="")
sign = -1;
State = 2; // Leading zeros of mantissa
else if (c == +)
sign =1;
State = 2; // Leading zeros of mantissa
else if (c>=‘0"and c<=9)
pushCharBackToString(c);
State = 2; // Leading zeros of mantissa
else if (c == EndOfString)
State = 9; // Exit
else
State = 9; // Exit
endif
break;



Sign of number (Digit, +, -, Null, or other)

case 1:
if (c=="")
sign = -1;
State = 2; // Leading zeros of mantissa
else if (c == +)
sign =1;
State = 2; // Leading zeros of mantissa
else if (c>=‘0"and c<=9)
pushCharBackToString(c);
State = 2; // Leading zeros of mantissa
else if (c == Null)
State = 9; // Exit
else // other
State = 9; // Exit
endif
break;



A More Appropriate Example

e Simple Bumper bot.
* Has two motor tank drive (RM, LM)
* Has bumpers on front corners (FrontRight, FrontLeft)

* Goes forward till it hits something then
* Moves backwards a bit (time based)
* Turns away from the object for a bit (time based)
* Then goes forward again.



Simple State Diagram

Simple Bumper Bot



Short Detour

To create these “Bubble” diagrams, you can obviously use paper and pencil, PowerPoint, or
something like Visio.

But a real simple way is to use the DOT program from the Graphviz package.
DOT allows the user to generate bubble diagrams from a text file.

The previous diagram was generated auto-magically from this text file:
digraph FSM {

rankdir =LR;

fontsize =10;

size ="8.5,11.0";

overlap =false;

fontsize =14;

label ="Simple Bumper Bot";

node [shape=circle]; Start;
node [shape=circle]; Fwd;
node [shape=circle]; Backupl;
node [shape=circle]; PivotCCW;
node [shape=circle]; Backup?2;
node [shape=circle]; PivotCW;

Start -> Fwd [label=""1;

Fwd ->Backup2 [label ="LF"];
Backup2  ->PivotCW [ label ="3 sec" ];
PivotCW  ->Fwd [label ="1sec" ];
Fwd ->Backupl [ label ="RF"];

Backupl  ->PivotCCW [ label ="3 sec"];
PivotCCW -> Fwd [label ="1 sec" ];



Start with the Template

Routine FSM
State = 0; (And other initializations)
Do forever

do common stuff;
switch (state):
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
end switch
End forever
End Routine



Adjust for Arduino

Init(void) {
State = 0; (And other initializations)
}
Loop(void) {
for (;;) {
do common stuff;
switch (state): {
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
}
}



Define your States

#define START
#define FWD
#define BACKUP1
#define PIVOT_CCW
#define BACKUP2
#define PIVOT_CW

v b W N = O



List all the conditions that change states

 Right front bumper pressed
e Left front bumper pressed

* Time delay



Update Template

Void init(void) {
state = START,;
}
Void loop(void) {
int state = 0;
for (;;) {
do common stuff;
switch (state):
case START:
do stuff; Set State or exit loop if needed; break;
case FWD:
do stuff; Set State or exit loop if needed; break;
case BACKUP1:
do stuff; Set State or exit loop if needed; break;
case PIVOT_CCW:
do stuff; Set State or exit loop if needed; break;
case BACKUP2:
do stuff; Set State or exit loop if needed; break;
case PIVOT_CW:
do stuff; Set State or exit loop if needed; break;
default:

do stuff; Set State or exit loop if needed; break;



Implement START

Case START:
setMotor(RIGHT, DIR_FWD);
setMotor(LEFT, DIR_FWD);
state = FWD; // Switch to FWD unconditionally.
break;



Implement FWD

Case FWD:
rf = getRightFrontBumper();
If = getLeftFrontBumper();
if (rf == true) {
state = BACKUP1;
} else if (If == true) {
state = BACKUP2;
} else {
// Keep on trucking

}

break;



Implement BACKUP1

case BACKUP1:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_REV);
delay(3*1000);

state = PIVOT_CCW,;
break;



Implement PIVOT_CCW

case PIVOT_CCW:
setMotor(RIGHT, DIR_FWD);
setMotor(LEFT, DIR_REV);
delay(1*1000);

state = FWD;
break;



Implement BACKUP?2

case BACKUP2:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_REV);
delay(3*1000);

state = PIVOT_CW;
break;



Implement PIVOT CW

case PIVOT_CW:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_FWD);
delay(1*1000);

state = FWD;
break;



Demo



Problem with ‘delay’

During delays, the robot can’t do anything else.
It can’t update a display, take measurements, respond to voice, ...

(It will still respond to interrupts)

One solution is to use an RTOS. (Remember those? ©)
As the delay is happening other tasks can run.

Another solution is to use target times.
Compute a time to change states
Compare this time each iteration to the current time.
Switch states when the current time >= to the target time.



Sample using target times

case PIVOT_CW: case PIVOT_CW:
setMotor(RIGHT, DIR_REV); if (firstPass) {
setMotor(LEFT, DIR_FWD); firstPass = false;
delay(1*1000); targetTime = millis() + 1000;
state = FWD; setMotor(RIGHT, DIR_REV);
break; setMotor(LEFT, DIR_FWD);
} else if (millis() > targetTime) {
state = FWD;
Must be careful with firstPass = true;
initialization of these variables! }else {
}

break;



Bumper Problems

* What happens if the bumper does not get released backing up?
* What happens if the robot hits something going backwards?

* What happens if the bumper gets pressed during pivots?

* What happens is both bumpers get hit at the same time?



A More Sophisticated Example

* Complex Bumper bot.
* Has two motor tank drive (RM, LM)
* Has bumpers on front corners (FrontRight, FrontLeft)

* Goes forward till it hits something then
* Moves backwards a bit
* Turns away from the object for a bit
* Then goes forward again.
* If it hits something turning
* Full stop,
* Wait for rescue.
* If it hits something going backwards
 Full stop
* Wait for rescue



Equivalent State Machine

RF or LF

Baclap2
RF or LF

BumperBot



Examples of when to use an FSM

* Point of sale payment system
* Total OK?, Swipe CC, Wait for auth, Please sign, have clerk check sig, ...

* Gas pump
» Swipe card, Debit?, Select fuel, Pump (show ads), submit CC, ...

* Decoding binary messages (GPS binary formats)

* Read sync word, read header, validate header, read body, validate body,
process body.

» Convert ASCII to floating point values
* Horner’s rule
* Parsing languages/scripts

* Sequencing
* Apply power, wait, send command, wait for reply, process reply, turn off
power.



Documentation

Use the DOT program from Graphviz and a simple script.
Put the dot commands inside your code.

Run a script to strip out the dot commands into a new file.
Run dot on the file to generate a PDF, BMP, PNG, ...

Use that in your documentation.



State machine definition at top of file

/* File header ........ */

/* WEIRD_TOKEN digraph FSM { */

/* WEIRD_TOKEN rankdir =LR; */

/* WEIRD_TOKEN fontsize = 10; */

/* WEIRD_TOKEN size ="8.5,11.0"; */

/* WEIRD _TOKEN overlap =false; */

/* WEIRD_TOKEN fontsize = 14; */

/* WEIRD_TOKEN label ="Simple Bumper Bot"; */
/* WEIRD_TOKEN node [shape=circle]; Start; */

/* WEIRD_TOKEN node [shape=circle]; Fwd; */

/* WEIRD_TOKEN node [shape=circle]; Backup1; */
/* WEIRD_TOKEN node [shape=circle]; PivotCCW, */
/* WEIRD_TOKEN node [shape=circle]; Backup2; */
/* WEIRD_TOKEN node [shape=circle]; PivotCW; */



State machine definitions in code

Case FWD:
rf = getRightFrontBumper();
If = getLeftFrontBumper();
if (rf == true) {
state = BACKUP1,
/* WEIRD_TOKEN Fwd -> Backupl [ label = “RF"]; */
} else if (If == true) {
state = BACKUP2;
/* WEIRD_TOKEN Fwd -> Backup2 [ label = “LF"]; */
} else {
// Keep on trucking

}

break;



State machine definition at bottom of file

/* WEIRD_TOKEN }*/

/* Bottom of file XYZ.c */



Script to extract DOT commands

Read each line
If line has “WEIRD_TOKEN” in it
Strip off leading whitespace
Strip off ‘/* WEIRD_TOKEN’
Strip off “*/’ from end
Write results to file

This is like a 15 line program in Python.



Practical advise

A large FSM is ugly to program and maintain
You have a switch for each case.

Each case has at least a few lines of code.
Pretty soon you have the subroutine from hell.
It is almost impossible to comprehend.



Solution 1: Subroutines

Void loop(void) {

for (;;) {
FSM_Top();
switch (state):
case START: FSM_Start(); break;
case FWD: FSM_Fwd(); break;

case BACKUP1: FSM_Backupl(); break;
case PIVOT_CCW: FSM_Pivot_CCW(); break;
case BACKUP2:  FSM_Backup2(); break;
case PIVOT_CW: FSM_Pivot CW(); break;
default: FSM_default();  break;

}



Solution 1: Subroutines

 Drawback:

* Because all your code is in separate subroutines you have issues with data
sharing.
 Solutions:
* Expose the variables as globals.

* Write set/get routines for the data. (Recommended)
* void setState(int state);
* int getState(void);



Solution 2: Table Driven

To implement this, you need to be very comfortable with structures,
arrays, typedefs, and callback routines (function pointers).

If you are then create a table of callback routines for each state.



Solution 2: Table Driven

TableEntry_t table[] = {

FSM_Start,
FSM_Fwd,
FSM_Backupl,
FSM_Pivot_CCW,
FSM_Backup?2,
FSM_Pivot_CW,
FSM_default

void loop(void)

{
entry = table[state];
if (entry.cb = NULL) {
entry.cb();
}
}



Questions?



