What is 3
Finite State Machine?

And why should | care?

What does Wikipedia say?

A Finite State Machine is a mathematical model of computation used
to design both computer programs and sequential logic circuits. It is
conceived as an abstract machine that can be in one of a finite number
of states. The machine is in only one state at a time; the state it is in at
any given time is called the current state. It can change from one state
to another when initiated by a triggering event or condition; this is
called a transition. A particular FSM is defined by a list of its states, and
the triggering condition for each transition.

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Mathematical model. (Way too high brow)
Used to design/write computer programs. (Sounds promising)

Used to design/write sequential logic circuits. (FPGA code)

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Abstract machine is a fancy way to say ‘programming tool’
Finite is better than infinite! We have a chance to code a finite number of things.
In only one state at a time. No quantum physics here!

Can change from one state to another. Would not be much use if it was stuck!

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Transition; What has to happen to go from one state to another.

An FSM is defined by its states and transitions. Clear as mud.

Simpler Definition

A Finite State Machine is a concept/tool that can aid in writing
computer programs or FPGA logic. It is a tool that can be in only one
state at a time (the current state). It can change from one state to
another when some triggering event or transition occurs. You execute
your code on each transition.

Simplest definition

* A Finite State Machine is a way to implement in software some types
of flowcharts.

wall found

Find Right
Wwall

Follow Right
Wall

Turn 80
Degrees
Clockwise

Turn 90 Degrees
Counter-clockwise

‘Wall at front

Wall at front

Clear Right
wall

Wall is over

An traditional example

You need to write a routine that will read in a series of
characters looking for a legal floating point number. Some
good examples are:

1.0, +2.0, -3.0, +0.004, -0.0005, +1e6, -2.E03, -4e-005
Some bad examples are:
.,-,a.3,3.4a,3..0,93.4,+1,E3,1.2E3.2

The processing of bytes stops when
1) You run out of characters in the string
2) You find a character that does not match a number.

How to you start to write this?

If this is the first character and it is not legal, return an error
if (nChar == 1) and (c=="+") or (c=="-’) or ((c>="0") and (c<="9’)) or (c==")
If the first character is a + sign then the whole number is positive
if (nChar==1) and (c=="+') sign = +1
If the first character is a - sign then the whole number is negative
if (nChar==1) and (c=="-") sign = -1
If the first character is a *’ than the number is positive and we need to start a
fraction
if (nChar==1) and (c=="") fraction = true

If the first character is a number, then we have a positive number and we need to
start a whole number.

if (nChar==1) and ((c>="0’) and (c<=9’)) {sigh=+1; fraction = false}
If the seconds character is (OMG, there must be a million combinations!)
if (nChar==2) and ARGHHHHHHHHH!

Floating Point Number Flowchart

SKIPPING SIGN OF LEADING ZEROS LEADING ZEROS MANTISSA
WHITESPACES NUMBER OF MANTISSA OF FRAC. PART INT PART

non-whitespace

EXPONENT EXPONENT EXPONENT MANTISSA
LEADING ZEROS SIGN FRAC. PART

So how do you turn this into code?

SKIPPING SIGN OF LEADING ZEROS LEADING ZEROS MANTISSA
WHITESPACES NUMBER OF MANTISSA OF FRAC. PART INT PART

non-whitespace

EXPONENT EXPONENT EXPONENT MANTISSA
LEADING ZEROS SIGN FRAC. PART

FSM Code Template

Routine FSM
State = 0; (And other initializations)
Do forever

do common stuff;
switch (state):
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
end switch
End forever
End Routine

Crude implementation of floating point parser

Routine TextToFloat(string)
State = 0; sign = 1; whole= 0; fraction=0
Do forever
c = getNextCharFromString()
switch (state):

case 0: Do Stuff; break; // Skipping leading whitespace
case 1: Do Stuff; break; // Sign of number

case 2: Do Stuff; break; // Leading zeros of mantissa
case 3: Do Stuff; break; // Fractional leading zeros
case 4: Do Stuff; break; // Integer part

case 5: Do Stuff; break; // Fractional part

case 6: Do Stuff; break; // Exponent sign

case 7: Do Stuff; break; // Exponent leading zeros
case 8: Do Stuff; break; // Exponent

case 9: Do Stuff; break; // Stop

default: ASSERT(); break; // Should never get here!
End Switch

End forever

End Routine

Skipping leading whitespace

case O:

if (c == <space>) or (c == <tab>)
State = 0; // No change

else
pushCharBackToString(c);
State = 1; // Sign of number

endif

break

Sign of number (Digit, +, -, EOS, or other)

case 1:
if (c=="")
sign = -1;
State = 2; // Leading zeros of mantissa
else if (c == +)
sign =1;
State = 2; // Leading zeros of mantissa
else if (c>=‘0"and c<=9)
pushCharBackToString(c);
State = 2; // Leading zeros of mantissa
else if (c == EndOfString)
State = 9; // Exit
else
State = 9; // Exit
endif
break;

Sign of number (Digit, +, -, Null, or other)

case 1:
if (c=="")
sign = -1;
State = 2; // Leading zeros of mantissa
else if (c == +)
sign =1;
State = 2; // Leading zeros of mantissa
else if (c>=‘0"and c<=9)
pushCharBackToString(c);
State = 2; // Leading zeros of mantissa
else if (c == Null)
State = 9; // Exit
else // other
State = 9; // Exit
endif
break;

A More Appropriate Example

e Simple Bumper bot.
* Has two motor tank drive (RM, LM)
* Has bumpers on front corners (FrontRight, FrontLeft)

* Goes forward till it hits something then
* Moves backwards a bit (time based)
* Turns away from the object for a bit (time based)
* Then goes forward again.

Simple State Diagram

Simple Bumper Bot

Short Detour

To create these “Bubble” diagrams, you can obviously use paper and pencil, PowerPoint, or
something like Visio.

But a real simple way is to use the DOT program from the Graphviz package.
DOT allows the user to generate bubble diagrams from a text file.

The previous diagram was generated auto-magically from this text file:
digraph FSM {

rankdir =LR;

fontsize =10;

size ="8.5,11.0";

overlap =false;

fontsize =14;

label ="Simple Bumper Bot";

node [shape=circle]; Start;
node [shape=circle]; Fwd;
node [shape=circle]; Backupl;
node [shape=circle]; PivotCCW;
node [shape=circle]; Backup?2;
node [shape=circle]; PivotCW;

Start -> Fwd [label=""1;

Fwd ->Backup2 [label ="LF"];
Backup2 ->PivotCW [label ="3 sec"];
PivotCW ->Fwd [label ="1sec"];
Fwd ->Backupl [label ="RF"];

Backupl ->PivotCCW [label ="3 sec"];
PivotCCW -> Fwd [label ="1 sec"];

Start with the Template

Routine FSM
State = 0; (And other initializations)
Do forever

do common stuff;
switch (state):
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
end switch
End forever
End Routine

Adjust for Arduino

Init(void) {
State = 0; (And other initializations)
}
Loop(void) {
for (;;) {
do common stuff;
switch (state): {
case O:
do stuff; Set State or exit loop if needed; break;
case 1:
do stuff; Set State or exit loop if needed; break;
case ...
do stuff; Set State or exit loop if needed; break;
default:
do stuff; Set State or exit loop if needed; break;
}
}

Define your States

#define START
#define FWD
#define BACKUP1
#define PIVOT_CCW
#define BACKUP2
#define PIVOT_CW

v b W N = O

List all the conditions that change states

 Right front bumper pressed
e Left front bumper pressed

* Time delay

Update Template

Void init(void) {
state = START,;
}
Void loop(void) {
int state = 0;
for (;;) {
do common stuff;
switch (state):
case START:
do stuff; Set State or exit loop if needed; break;
case FWD:
do stuff; Set State or exit loop if needed; break;
case BACKUP1:
do stuff; Set State or exit loop if needed; break;
case PIVOT_CCW:
do stuff; Set State or exit loop if needed; break;
case BACKUP2:
do stuff; Set State or exit loop if needed; break;
case PIVOT_CW:
do stuff; Set State or exit loop if needed; break;
default:

do stuff; Set State or exit loop if needed; break;

Implement START

Case START:
setMotor(RIGHT, DIR_FWD);
setMotor(LEFT, DIR_FWD);
state = FWD; // Switch to FWD unconditionally.
break;

Implement FWD

Case FWD:
rf = getRightFrontBumper();
If = getLeftFrontBumper();
if (rf == true) {
state = BACKUP1;
} else if (If == true) {
state = BACKUP2;
} else {
// Keep on trucking

}

break;

Implement BACKUP1

case BACKUP1:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_REV);
delay(3*1000);

state = PIVOT_CCW,;
break;

Implement PIVOT_CCW

case PIVOT_CCW:
setMotor(RIGHT, DIR_FWD);
setMotor(LEFT, DIR_REV);
delay(1*1000);

state = FWD;
break;

Implement BACKUP?2

case BACKUP2:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_REV);
delay(3*1000);

state = PIVOT_CW;
break;

Implement PIVOT CW

case PIVOT_CW:
setMotor(RIGHT, DIR_REV);
setMotor(LEFT, DIR_FWD);
delay(1*1000);

state = FWD;
break;

Demo

Problem with ‘delay’

During delays, the robot can’t do anything else.
It can’t update a display, take measurements, respond to voice, ...

(It will still respond to interrupts)

One solution is to use an RTOS. (Remember those? ©)
As the delay is happening other tasks can run.

Another solution is to use target times.
Compute a time to change states
Compare this time each iteration to the current time.
Switch states when the current time >= to the target time.

Sample using target times

case PIVOT_CW: case PIVOT_CW:
setMotor(RIGHT, DIR_REV); if (firstPass) {
setMotor(LEFT, DIR_FWD); firstPass = false;
delay(1*1000); targetTime = millis() + 1000;
state = FWD; setMotor(RIGHT, DIR_REV);
break; setMotor(LEFT, DIR_FWD);
} else if (millis() > targetTime) {
state = FWD;
Must be careful with firstPass = true;
initialization of these variables! }else {
}

break;

Bumper Problems

* What happens if the bumper does not get released backing up?
* What happens if the robot hits something going backwards?

* What happens if the bumper gets pressed during pivots?

* What happens is both bumpers get hit at the same time?

A More Sophisticated Example

* Complex Bumper bot.
* Has two motor tank drive (RM, LM)
* Has bumpers on front corners (FrontRight, FrontLeft)

* Goes forward till it hits something then
* Moves backwards a bit
* Turns away from the object for a bit
* Then goes forward again.
* If it hits something turning
* Full stop,
* Wait for rescue.
* If it hits something going backwards
 Full stop
* Wait for rescue

Equivalent State Machine

RF or LF

Baclap2
RF or LF

BumperBot

Examples of when to use an FSM

* Point of sale payment system
* Total OK?, Swipe CC, Wait for auth, Please sign, have clerk check sig, ...

* Gas pump
» Swipe card, Debit?, Select fuel, Pump (show ads), submit CC, ...

* Decoding binary messages (GPS binary formats)

* Read sync word, read header, validate header, read body, validate body,
process body.

» Convert ASCII to floating point values
* Horner’s rule
* Parsing languages/scripts

* Sequencing
* Apply power, wait, send command, wait for reply, process reply, turn off
power.

Documentation

Use the DOT program from Graphviz and a simple script.
Put the dot commands inside your code.

Run a script to strip out the dot commands into a new file.
Run dot on the file to generate a PDF, BMP, PNG, ...

Use that in your documentation.

State machine definition at top of file

/* File header */

/* WEIRD_TOKEN digraph FSM { */

/* WEIRD_TOKEN rankdir =LR; */

/* WEIRD_TOKEN fontsize = 10; */

/* WEIRD_TOKEN size ="8.5,11.0"; */

/* WEIRD _TOKEN overlap =false; */

/* WEIRD_TOKEN fontsize = 14; */

/* WEIRD_TOKEN label ="Simple Bumper Bot"; */
/* WEIRD_TOKEN node [shape=circle]; Start; */

/* WEIRD_TOKEN node [shape=circle]; Fwd; */

/* WEIRD_TOKEN node [shape=circle]; Backup1; */
/* WEIRD_TOKEN node [shape=circle]; PivotCCW, */
/* WEIRD_TOKEN node [shape=circle]; Backup2; */
/* WEIRD_TOKEN node [shape=circle]; PivotCW; */

State machine definitions in code

Case FWD:
rf = getRightFrontBumper();
If = getLeftFrontBumper();
if (rf == true) {
state = BACKUP1,
/* WEIRD_TOKEN Fwd -> Backupl [label = “RF"]; */
} else if (If == true) {
state = BACKUP2;
/* WEIRD_TOKEN Fwd -> Backup2 [label = “LF"]; */
} else {
// Keep on trucking

}

break;

State machine definition at bottom of file

/* WEIRD_TOKEN }*/

/* Bottom of file XYZ.c */

Script to extract DOT commands

Read each line
If line has “WEIRD_TOKEN” in it
Strip off leading whitespace
Strip off ‘/* WEIRD_TOKEN’
Strip off “*/’ from end
Write results to file

This is like a 15 line program in Python.

Practical advise

A large FSM is ugly to program and maintain
You have a switch for each case.

Each case has at least a few lines of code.
Pretty soon you have the subroutine from hell.
It is almost impossible to comprehend.

Solution 1: Subroutines

Void loop(void) {

for (;;) {
FSM_Top();
switch (state):
case START: FSM_Start(); break;
case FWD: FSM_Fwd(); break;

case BACKUP1: FSM_Backupl(); break;
case PIVOT_CCW: FSM_Pivot_CCW(); break;
case BACKUP2: FSM_Backup2(); break;
case PIVOT_CW: FSM_Pivot CW(); break;
default: FSM_default(); break;

}

Solution 1: Subroutines

 Drawback:

* Because all your code is in separate subroutines you have issues with data
sharing.
 Solutions:
* Expose the variables as globals.

* Write set/get routines for the data. (Recommended)
* void setState(int state);
* int getState(void);

Solution 2: Table Driven

To implement this, you need to be very comfortable with structures,
arrays, typedefs, and callback routines (function pointers).

If you are then create a table of callback routines for each state.

Solution 2: Table Driven

TableEntry_t table[] = {

FSM_Start,
FSM_Fwd,
FSM_Backupl,
FSM_Pivot_CCW,
FSM_Backup?2,
FSM_Pivot_CW,
FSM_default

void loop(void)

{
entry = table[state];
if (entry.cb = NULL) {
entry.cb();
}
}

Questions?

