
What is a
Finite State Machine?

And why should I care?

What does Wikipedia say?

A Finite State Machine is a mathematical model of computation used
to design both computer programs and sequential logic circuits. It is
conceived as an abstract machine that can be in one of a finite number
of states. The machine is in only one state at a time; the state it is in at
any given time is called the current state. It can change from one state
to another when initiated by a triggering event or condition; this is
called a transition. A particular FSM is defined by a list of its states, and
the triggering condition for each transition.

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Mathematical model. (Way too high brow)

Used to design/write computer programs. (Sounds promising)

Used to design/write sequential logic circuits. (FPGA code)

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Abstract machine is a fancy way to say ‘programming tool’

Finite is better than infinite! We have a chance to code a finite number of things.

In only one state at a time. No quantum physics here!

Can change from one state to another. Would not be much use if it was stuck!

Dissecting the Definition

A Finite State Machine is a mathematical model of computation used to design
both computer programs and sequential logic circuits. It is conceived as an
abstract machine that can be in one of a finite number of states. The machine is in
only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Transition; What has to happen to go from one state to another.

An FSM is defined by its states and transitions. Clear as mud.

Simpler Definition

A Finite State Machine is a concept/tool that can aid in writing
computer programs or FPGA logic. It is a tool that can be in only one
state at a time (the current state). It can change from one state to
another when some triggering event or transition occurs. You execute
your code on each transition.

Simplest definition

• A Finite State Machine is a way to implement in software some types
of flowcharts.

An traditional example

You need to write a routine that will read in a series of
characters looking for a legal floating point number. Some
good examples are:

1.0, +2.0, -3.0, +0.004, -0.0005, +1e6, -2.E03, -4e-005

Some bad examples are:

., -, a.3, 3.a, 3..0, q3.4, +-1, E3, 1.2E3.2

The processing of bytes stops when

1) You run out of characters in the string

2) You find a character that does not match a number.

How to you start to write this?

If this is the first character and it is not legal, return an error

if (nChar == 1) and (c==‘+’) or (c==‘-’) or ((c>=’0’) and (c<=‘9’)) or (c==‘.’)

If the first character is a + sign then the whole number is positive

if (nChar==1) and (c==‘+’) sign = +1

If the first character is a - sign then the whole number is negative

if (nChar==1) and (c==‘-’) sign = -1

If the first character is a ‘.’ than the number is positive and we need to start a
fraction

if (nChar==1) and (c==‘.’) fraction = true

If the first character is a number, then we have a positive number and we need to
start a whole number.

if (nChar==1) and ((c>=’0’) and (c<=‘9’)) {sign=+1; fraction = false}

If the seconds character is (OMG, there must be a million combinations!)

if (nChar==2) and ARGHHHHHHHHH!

Floating Point Number Flowchart

So how do you turn this into code?

FSM Code Template

Routine FSM

State = 0; (And other initializations)

Do forever

do common stuff;

switch (state):

case 0:

do stuff; Set State or exit loop if needed; break;

case 1:

do stuff; Set State or exit loop if needed; break;

case …

do stuff; Set State or exit loop if needed; break;

default:

do stuff; Set State or exit loop if needed; break;

end switch

End forever

End Routine

Crude implementation of floating point parser

Routine TextToFloat(string)

State = 0; sign = 1; whole= 0; fraction=0

Do forever

c = getNextCharFromString()

switch (state):

case 0: Do Stuff; break; // Skipping leading whitespace

case 1: Do Stuff; break; // Sign of number

case 2: Do Stuff; break; // Leading zeros of mantissa

case 3: Do Stuff; break; // Fractional leading zeros

case 4: Do Stuff; break; // Integer part

case 5: Do Stuff; break; // Fractional part

case 6: Do Stuff; break; // Exponent sign

case 7: Do Stuff; break; // Exponent leading zeros

case 8: Do Stuff; break; // Exponent

case 9: Do Stuff; break; // Stop

default: ASSERT(); break; // Should never get here!

End Switch

End forever

End Routine

Skipping leading whitespace

case 0:

if (c == <space>) or (c == <tab>)

State = 0; // No change

else

pushCharBackToString(c);

State = 1; // Sign of number

endif

break

Sign of number (Digit, +, -, EOS, or other)

case 1:

if (c == ‘-’)

sign = -1;

State = 2; // Leading zeros of mantissa

else if (c == ‘+’)

sign = 1;

State = 2; // Leading zeros of mantissa

else if (c >= ‘0’ and c <= 9)

pushCharBackToString(c);

State = 2; // Leading zeros of mantissa

else if (c == EndOfString)

State = 9; // Exit

else

State = 9; // Exit

endif

break;

Sign of number (Digit, +, -, Null, or other)

case 1:

if (c == ‘-’)

sign = -1;

State = 2; // Leading zeros of mantissa

else if (c == ‘+’)

sign = 1;

State = 2; // Leading zeros of mantissa

else if (c >= ‘0’ and c <= 9)

pushCharBackToString(c);

State = 2; // Leading zeros of mantissa

else if (c == Null)

State = 9; // Exit

else // other

State = 9; // Exit

endif

break;

A More Appropriate Example

• Simple Bumper bot.
• Has two motor tank drive (RM, LM)

• Has bumpers on front corners (FrontRight, FrontLeft)

• Goes forward till it hits something then
• Moves backwards a bit (time based)

• Turns away from the object for a bit (time based)

• Then goes forward again.

Simple State Diagram

Short Detour
To create these “Bubble” diagrams, you can obviously use paper and pencil, PowerPoint, or
something like Visio.

But a real simple way is to use the DOT program from the Graphviz package.

DOT allows the user to generate bubble diagrams from a text file.

The previous diagram was generated auto-magically from this text file:
digraph FSM {
rankdir = LR;
fontsize = 10;
size = "8.5,11.0";
overlap = false;
fontsize = 14;
label = "Simple Bumper Bot";

node [shape=circle]; Start;
node [shape=circle]; Fwd;
node [shape=circle]; Backup1;
node [shape=circle]; PivotCCW;
node [shape=circle]; Backup2;
node [shape=circle]; PivotCW;

Start -> Fwd [label = ""];
Fwd -> Backup2 [label = "LF"];
Backup2 -> PivotCW [label = "3 sec"];
PivotCW -> Fwd [label = "1 sec"];
Fwd -> Backup1 [label = "RF"];
Backup1 -> PivotCCW [label = "3 sec"];
PivotCCW -> Fwd [label = "1 sec"];

}

Start with the Template

Routine FSM

State = 0; (And other initializations)

Do forever

do common stuff;

switch (state):

case 0:

do stuff; Set State or exit loop if needed; break;

case 1:

do stuff; Set State or exit loop if needed; break;

case …

do stuff; Set State or exit loop if needed; break;

default:

do stuff; Set State or exit loop if needed; break;

end switch

End forever

End Routine

Adjust for Arduino

Init(void) {

State = 0; (And other initializations)

}

Loop(void) {

for (;;) {

do common stuff;

switch (state): {

case 0:

do stuff; Set State or exit loop if needed; break;

case 1:

do stuff; Set State or exit loop if needed; break;

case …

do stuff; Set State or exit loop if needed; break;

default:

do stuff; Set State or exit loop if needed; break;

}

}

}

Define your States

#define START 0

#define FWD 1

#define BACKUP1 2

#define PIVOT_CCW 3

#define BACKUP2 4

#define PIVOT_CW 5

List all the conditions that change states

• Right front bumper pressed

• Left front bumper pressed

• Time delay

Update Template

Void init(void) {

state = START;

}

Void loop(void) {

int state = 0;

for (;;) {

do common stuff;

switch (state):

case START:

do stuff; Set State or exit loop if needed; break;

case FWD:

do stuff; Set State or exit loop if needed; break;

case BACKUP1:

do stuff; Set State or exit loop if needed; break;

case PIVOT_CCW:

do stuff; Set State or exit loop if needed; break;

case BACKUP2:

do stuff; Set State or exit loop if needed; break;

case PIVOT_CW:

do stuff; Set State or exit loop if needed; break;

default:

do stuff; Set State or exit loop if needed; break;

}

}

}

Implement START

Case START:

setMotor(RIGHT, DIR_FWD);

setMotor(LEFT, DIR_FWD);

state = FWD; // Switch to FWD unconditionally.

break;

Implement FWD

Case FWD:

rf = getRightFrontBumper();

lf = getLeftFrontBumper();

if (rf == true) {

state = BACKUP1;

} else if (lf == true) {

state = BACKUP2;

} else {

// Keep on trucking

}
break;

Implement BACKUP1

case BACKUP1:

setMotor(RIGHT, DIR_REV);

setMotor(LEFT, DIR_REV);

delay(3*1000);

state = PIVOT_CCW;
break;

Implement PIVOT_CCW

case PIVOT_CCW:

setMotor(RIGHT, DIR_FWD);

setMotor(LEFT, DIR_REV);

delay(1*1000);

state = FWD;
break;

Implement BACKUP2

case BACKUP2:

setMotor(RIGHT, DIR_REV);

setMotor(LEFT, DIR_REV);

delay(3*1000);

state = PIVOT_CW;
break;

Implement PIVOT_CW

case PIVOT_CW:

setMotor(RIGHT, DIR_REV);

setMotor(LEFT, DIR_FWD);

delay(1*1000);

state = FWD;
break;

Demo

Problem with ‘delay’

During delays, the robot can’t do anything else.

It can’t update a display, take measurements, respond to voice, …

(It will still respond to interrupts)

One solution is to use an RTOS. (Remember those? )

As the delay is happening other tasks can run.

Another solution is to use target times.

Compute a time to change states

Compare this time each iteration to the current time.

Switch states when the current time >= to the target time.

Sample using target times

case PIVOT_CW:

setMotor(RIGHT, DIR_REV);

setMotor(LEFT, DIR_FWD);

delay(1*1000);

state = FWD;
break;

case PIVOT_CW:

if (firstPass) {

firstPass = false;

targetTime = millis() + 1000;

setMotor(RIGHT, DIR_REV);

setMotor(LEFT, DIR_FWD);

} else if (millis() > targetTime) {

state = FWD;

firstPass = true;

} else {

}

break;

Must be careful with
initialization of these variables!

Bumper Problems

• What happens if the bumper does not get released backing up?

• What happens if the robot hits something going backwards?

• What happens if the bumper gets pressed during pivots?

• What happens is both bumpers get hit at the same time?

A More Sophisticated Example

• Complex Bumper bot.
• Has two motor tank drive (RM, LM)

• Has bumpers on front corners (FrontRight, FrontLeft)

• Goes forward till it hits something then
• Moves backwards a bit

• Turns away from the object for a bit

• Then goes forward again.

• If it hits something turning
• Full stop,

• Wait for rescue.

• If it hits something going backwards
• Full stop

• Wait for rescue

Equivalent State Machine

Examples of when to use an FSM

• Point of sale payment system
• Total OK?, Swipe CC, Wait for auth, Please sign, have clerk check sig, …

• Gas pump
• Swipe card, Debit?, Select fuel, Pump (show ads), submit CC, …

• Decoding binary messages (GPS binary formats)
• Read sync word, read header, validate header, read body, validate body,

process body.

• Convert ASCII to floating point values
• Horner’s rule

• Parsing languages/scripts

• Sequencing
• Apply power, wait, send command, wait for reply, process reply, turn off

power.

Documentation

Use the DOT program from Graphviz and a simple script.

Put the dot commands inside your code.

Run a script to strip out the dot commands into a new file.

Run dot on the file to generate a PDF, BMP, PNG, …

Use that in your documentation.

State machine definition at top of file

/* File header …….. */

/* WEIRD_TOKEN digraph FSM { */
/* WEIRD_TOKEN rankdir = LR; */
/* WEIRD_TOKEN fontsize = 10; */
/* WEIRD_TOKEN size = "8.5,11.0"; */
/* WEIRD_TOKEN overlap = false; */
/* WEIRD_TOKEN fontsize = 14; */
/* WEIRD_TOKEN label = "Simple Bumper Bot"; */
/* WEIRD_TOKEN node [shape=circle]; Start; */
/* WEIRD_TOKEN node [shape=circle]; Fwd; */
/* WEIRD_TOKEN node [shape=circle]; Backup1; */
/* WEIRD_TOKEN node [shape=circle]; PivotCCW; */
/* WEIRD_TOKEN node [shape=circle]; Backup2; */
/* WEIRD_TOKEN node [shape=circle]; PivotCW; */

State machine definitions in code

Case FWD:

rf = getRightFrontBumper();

lf = getLeftFrontBumper();

if (rf == true) {

state = BACKUP1;

/* WEIRD_TOKEN Fwd -> Backup1 [label = “RF"]; */

} else if (lf == true) {

state = BACKUP2;

/* WEIRD_TOKEN Fwd -> Backup2 [label = “LF"]; */

} else {

// Keep on trucking

}
break;

State machine definition at bottom of file

.

.

.

.
/* WEIRD_TOKEN }*/

/* Bottom of file XYZ.c */

Script to extract DOT commands

Read each line
If line has “WEIRD_TOKEN” in it

Strip off leading whitespace

Strip off ‘/* WEIRD_TOKEN’

Strip off ‘*/’ from end

Write results to file

This is like a 15 line program in Python.

Practical advise

A large FSM is ugly to program and maintain

You have a switch for each case.

Each case has at least a few lines of code.

Pretty soon you have the subroutine from hell.

It is almost impossible to comprehend.

Solution 1: Subroutines

Void loop(void) {

for (;;) {

FSM_Top();

switch (state):

case START: FSM_Start(); break;

case FWD: FSM_Fwd(); break;

case BACKUP1: FSM_Backup1(); break;

case PIVOT_CCW: FSM_Pivot_CCW(); break;

case BACKUP2: FSM_Backup2(); break;

case PIVOT_CW: FSM_Pivot_CW(); break;

default: FSM_default(); break;

}

}

}

Solution 1: Subroutines

• Drawback:
• Because all your code is in separate subroutines you have issues with data

sharing.

• Solutions:
• Expose the variables as globals.

• Write set/get routines for the data. (Recommended)
• void setState(int state);

• int getState(void);

Solution 2: Table Driven

To implement this, you need to be very comfortable with structures,
arrays, typedefs, and callback routines (function pointers).

If you are then create a table of callback routines for each state.

Solution 2: Table Driven

TableEntry_t table[] = {

FSM_Start,

FSM_Fwd,

FSM_Backup1,

FSM_Pivot_CCW,

FSM_Backup2,

FSM_Pivot_CW,

FSM_default

};

void loop(void)

{

entry = table[state];

if (entry.cb != NULL) {

entry.cb();

}

}

Questions?

