
Skye Sweeney
Skye@fll-freak.com

May 20 2017

 From your experience with your shower, you

pretty much know how your valve works to
control temperature.

 Most of the time you put the valve in pretty
much the right position on the first try.

 You only need a few nudges to get it just
right.

 You have an idea where to put the valve.

 You have an idea how much to adjust the
valve based on the temperature error.

 If you sense the temperature changing
quickly, you may adjust even faster.
◦ Hot water running out!

 When adjusting you need to account for the
distance from valve to shower head
◦ In my case it is about a 2.5 seconds lag

 Varies due to
◦ Season (cold water is really cold in winter)

◦ Number of previous users

 All bets are off for the hotel shower!
◦ PID controllers are tuned to a specific system.

 Tdemanded The temperature you would like

 Tactual The temperature the shower actually is.

 Error = Tdemanded - Tactual

 Want to drive Error to zero by adjusting the faucet valve.

 Definitions:
◦ Setpoint What you want. Tdemanded in this case.

◦ Process Variable What you have. Tactual in this case.

◦ Control Variable What you control. The valve in this case

 There “Endless Hot Water” system allows the
temperature to oscillate significantly.

40

50

60

70

80

90

100

110

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Temperature over time

Furnace Kicks on

Furnace Kicks off

 Temperature sensor in shower head

 Servo to drive valve

 Human interface to set temperature

 Arduino to control the whole mess

 What could possibly go wrong?

 But how to write control algorithm?

 A very popular control system algorithm.
Often used in things like cruise controls,
autopilots, factory controls. Best used for
systems that are fairly linear.

 The name comes from

◦Proportional

◦ Integral

◦Differential

 Also P, I, D, PI, PD, ID controllers

The Most Popular!

loop(void)

{
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

valveAngle =

setValveAngle(valveAngle);
delay(period);

}

Some kind of magic

y = 0.3967x + 55.048

40

50

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120 140 160 180

W
a
te

r
T
e
m

p

Valve Angle

Water Temp vs Valve Angle

Winter

Summer

Avg

Linear (Avg)

 So a good initial guess is:

 Temp = 0.3967 * ValveAngle + 55.048

 ValveAngle = (Temp–55.048)/0.3967

 ValveAngle = 2.52*Temp – 138.8

 For every 1F temp change, you need to turn
the handle by about 2.52 degrees.

loop(void)

{
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp; // Kp ≅2.5F/ValveDeg

analogWrite(P);
delay(period);

}

 If the error is 0, then the valve is set to 0.
◦ This makes the shower COLD!

 If the error is large, then the valve moves
towards hot.

 So you reach a steady state, but it is NOT the
temperature you want. 

 The Integral term will tweak the solution.
◦ If too warm make colder

◦ If too cold make warmer

 Each time we run through the loop, we will
add or subtract a bit to valveAngle to move
the valve in the right direction.

(In math, continuous adding is known as ‘taking the integral’)

 Compute the error
◦ E = Tdemanded - Tactual

 Now perform the ‘integral’
◦ I = I + E * Ki; (Ki is a positive magic constant; more later)

 If we are too cold, Tdemanded > Tactual so the error will be
positive.

 ‘I’ will increase each time the shower is too cold.

 ‘I’ will decrease each time the shower is too warm.

 ‘I’ will change more the worse the error is.

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp;

I = I + Error * Ki;

setValveAngle(P + I);
delay(period);

}

90% of time this is
all you need!

 Rarely used in practice.
◦ Error rate term is often very noisy

 Acts based on how fast the error is changing.

 Most often used to dampen the system
◦ Think of a car shock absorber.

◦ The K term will often be negative to oppose PI

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
ErrorRate = (LastError – Error);

P = Error * Kp;
I = I + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;

setValveAngle(P + I + D);
delay(period);

}

 Used when you have good system knowledge.

 If you can predict where the control should
be, start there!

 Does not rely on having to wait for I to
integrate up.

 For the shower we have a good system
model.
◦ ValveAngle = 2.52*Temp – 138.8

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
ErrorRate = (LastError – Error);

P = Error * Kp;
I = I + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;
F = (Demanded * 2.52 – 138.9);

setValveAngle(P + I + D + F);
delay(period);

}

 Must call the PID control loop at a regular
rate.

 Ensure that you limit variables to within legal
ranges.
◦ Limit P, I, D, F, and sum terms independently.

 P = …

 P = constrain(P, lowP, highP);

 I = …

 I = constain(I, lowI, highI);

 …

 When a control directly affects the output.
◦ Can’t control car speed by changing radio volume!

 When the system is monotonic and linear.

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Not possible

Large changes
in slope

Slope changes sign!

Monotonic: Having the same sign slope

 How often to call the PID loop?
◦ How fast does the system respond?

◦ Blast furnace can run slower than Segway.

◦ How fast does sensor change?

◦ Rule of Thumb:

 Run the PID loop at about 10 to 100 times faster then
the settling time.

 The time it takes the natural system to return
to equilibrium after a disturbance.
◦ Shower: The time it takes for the water to move

from the valve to your skin and reheat the pipes.

◦ Cruise control: The time it takes the car to reach its
new speed when you make a sudden accelerator
change.

 Self-regulating
◦ KI is the key term for stability

 Integrating
◦ KP is the key term for stability

 Temperature control
◦ Gas flow to control oven temperature

 Speed control
◦ Accelerator to control speed.

 Power Supply
◦ PWM duty cycle to control voltage

 Servo control
◦ Pulse width to control output position

 Fluid level
◦ Valve filling slowly draining tank

 Swimming pool with evaporation

 Heading
◦ Steering wheel controlling direction

 How to pick kP, kI, and kd?

 Trial and error
◦ Adjust kP till you get oscillations
◦ Back kP off by 25-50%
◦ Adjust kI to get good following
◦ Only use kD if nothing else works.

 Heuristic methods like Zeiggler Meyers
◦ Requires the ability to run specific tests and record data.
◦ Data is then processed to compute the kP, kI, and kD

terms.
◦ Often leads to aggressive tuning that must be tweaked.

 Symmetry
◦ Heat only temperature control vs Peltier cooler

 Linear discontinuities
◦ May need different gains for different gears

 Sensor placement
◦ Minimize dead time (latency)

 Sensor accuracy, update rate, and noise
◦ You get what you pay for!

 Control accuracy
◦ 8 bit PWM only gives you 256 steps.

 Windup removal
◦ Limit I to some range.

 Lockouts
◦ Freeze loop when some known transient event

occurs like opening the oven door.

 Derivative filtering
◦ Add small filter to clean up error rate noise

 FiltErrorRate = k * FiltErrorRate + (1.0-k)*ErrorRate

 When setpoint changes, the error value will
change suddenly.

 This can cause a significant bump (shock) to
the system.

 So we want to create a way to smooth over
the transition.

 CV1 = e1*Kp + I1*Ki + e1*Kd

 e1 = SP1-PV

 CV2 = e2*Kp + I2*Ki + e2 * Kd

 e2 = SP2-PV

 Want CV1 ≅ CV2 when SP1 -> SP2

 e1*Kp+I1*Ki+e1*Kd = e2*Kp+I2*Ki+e2*Kd

 I2 = I1 + Kp/Ki * (SP1-SP2)

● ●

●

●

 Wall following robot

 Sensor is an IR distance sensor
◦ Like a Sharp

 Control is the difference in motor speeds.

 This is an Integrating system

 Motor speed control

 Sensor is an optical encoder (90 cpr)

 Speed control is via PWM (255 counts)

 This is a self regulating system

 What is the settling time?
◦ Run step test and find about 1 second

 What should be the PID update rate?
◦ Settling time/(10 to 100) is 100ms to 10ms

 How accurately can we measure speed?
◦ At full speed, each stripe goes by in 2.5ms
◦ Arduino micros gives answer to +- 4 usec
◦ This equates to a 0.16% error.

 How fast is our sensor update rate?
◦ At the low speed end each stripe takes 20ms!

 How accurately can we set speed
◦ At full speed we get 1600 deg/sec
◦ At full speed our PWM count is 255
◦ So each count is about 6.25 deg/sec

 Can we guess what KP should be?

 Get speed at each PWM count

y = 5.0445x - 23.373

-200

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

S
p
e
e
d
 (

d
/
s
)

PWM (counts)

Speed vs PWM

 Swap axes to determine slope
◦ You need ~0.2 PWM counts per deg/sec

◦ That is a good place to start with KP!

y = 0.1981x + 4.6983

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

P
W

M
 (

c
o
u
n
ts

)

Speed (d/s)

PWM vs Speed

