Understanding PID Loops

Skye Sweeney
Skye@fll-freak.com
May 20 2017

Taking a Shower

» From your experience with your shower, you
pretty much know how your valve works to
control temperature.

» Most of the time you put the valve in pretty
much the right position on the first try.

» You only need a few nudges to get it just
right.

Adjustment

» You have an idea where to put the valve.

» You have an idea how much to adjust the
valve based on the temperature error.

» If you sense the temperature changing
quickly, you may adjust even faster.
- Hot water running out!

» When adjusting you need to account for the
distance from valve to shower head
> In my case it is about a 2.5 seconds lag

Caveats

» Varies due to
> Season (cold water is really cold in winter)
- Number of previous users

» All bets are off for the hotel shower!
> PID controllers are tuned to a specific system.

So what are you doing?

» Tgemanded The temperature you would like

) Tactual The temperature the shower actually is.

» Error = Tdemanded —Tactual

» Want to drive Error to zero by adjusting the faucet valve.

» Definitions:
> Setpoint What you want. T .mandeq iN this case.
> Process Variable What you have. T, in this case.
> Control Variable What you control. The valve in this case

My In-laws Shower

» There “Endless Hot Water” system allows the
temperature to oscillate significantly.

Temperature over time

120

110

100

90

80

70

60 Furnace Kicks off
50

1357 9111315171921232527293133353739414345474951535557

Let’s Fix the Shower!

» Temperature sensor in shower head
» Servo to drive valve

» Human interface to set temperature
» Arduino to control the whole mess
» What could possibly go wrong?

» But how to write control algorithm?

PID as the control algorithm

» A very popular control system algorithm.
Often used in things like cruise controls,

autopilots, factory controls. Best used for
systems that are fairly linear.

» The name comes from
© Proportional

The Most Popular!
© |ntegral
o Differential

» Also P, I, D, PIl, PD, ID controllers

Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
valveAngle = - Some kind of magic

setValveAngle(valveAngle);
delay(period);

Proportional

Water Temp vs Valve Angle

140
y = 0.3967x + 55.048
130
120
110
2 100
€
£ Winter
F 90
3 Summer
T
= 80 Avg
70 == Linear (Avg)
60
50
40

0 20 40 60 80 100 120 140 160 180
Valve Angle

Proportional

» So a good initial guess is:

» Temp = 0.3967 * ValveAngle + 55.048
» ValveAngle = (Temp-55.048)/0.3967

» ValveAngle = 2.52*Temp - 138.8

» For every 1F temp change, you need to turn
the handle by about 2.52 degrees.

Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp; // Kp =2.5F/ValveDeg

analogWrite(P);
delay(period);

Can’t ever get there!

» If the error is O, then the valve is set to O.
> This makes the shower COLD!

» If the error is large, then the valve moves
towards hot.

» So you reach a steady state, but it is NOT the
temperature you want. ®

Integral

» The Integral term will tweak the solution.

> |If too warm make colder
> If too cold make warmer

» Each time we run through the loop, we will
add or subtract a bit to valveAngle to move

the valve in the right direction.

(In math, continuous adding is known as ‘taking the integral’)

Integral

» Compute the error
° B = Tdemanded —Tactual

» Now perform the ‘integral’

© | - | + E* KI, (Ki is a positive magic constant; more later)

» If we are too cold, T emanded > Tactual SO the error will be
positive.

» ‘I’ will increase each time the shower is too cold.
» ‘I’ will decrease each time the shower is too warm.
» ‘I’ will change more the worse the error is.

Software

loop(void)

{
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;
P = Error * Kp;

90% of time this is
o all you need!
| =1+ Error * Ki;

setValveAngle(P + I);
delay(period);

Differential

» Rarely used in practice.
- Error rate term is often very noisy

» Acts based on how fast the error is changing.

» Most often used to dampen the system
- Think of a car shock absorber.
- The K term will often be negative to oppose PI

Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;

ErrorRate = (LastError - Error);
P = Error * Kp;

I | + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;

setValveAngle(P + | + D);
delay(period);

Feed Forward

» Used when you have good system knowledge.

» If you can predict where the control should
ne, start there!

» Does not rely on having to wait for | to
integrate up.

» For the shower we have a good system
model.
> ValveAngle = 2.52*Temp - 138.8

Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;
ErrorRate = (LastError - Error);
P = Error * Kp;
| =1+ Error * Ki;

D = ErrorRate * Kd;
LastError = Error;
F = (Demanded * 2.52 - 138.9);

setValveAngle(P + | + D + F);
delay(period);

Software Considerations

» Must call the PID control loop at a regular

rate.
» Ensure that you limit variables to within legal
ranges.
- Limit P, I, D, F, and sum terms independently.
- P= ..

- P = constrain(P, lowP, highP);
- | = ...
- | = constain(l, lowl, highl);

When can they be used?

» When a control directly affects the output.
> Can’t control car speed by changing radio volume!

» When the system is monotonic and linear.

Not possible

Slope changes sign!

el L arge changes
in slope

10 15 20 25

Monotonic: Having the same sign slope

Dynamic Considerations

» How often to call the PID loop?
- How fast does the system respond?
- Blast furnace can run slower than Segway.
- How fast does sensor change?
> Rule of Thumb:

 Run the PID loop at about 10 to 100 times faster then
the settling time.

Settling Time

» The time it takes the natural system to return
to equilibrium after a disturbance.

- Shower: The time it takes for the water to move
from the valve to your skin and reheat the pipes.

> Cruise control: The time it takes the car to reach its

new speed when you make a sudden accelerator
Change Settling Time

65

60

55

50

J

/ Settling Time
40 \
35 Accelerator depressed

30
0 0.5 1 15 2 2.5 3 3.5

Time (sec)

=
1)
[
o

vl

45

Types of Systems

» Self-regulating
> Kl is the key term for stability

» Integrating
- KP is the key term for stability

Self Regulating Samples

» Temperature control
- Gas flow to control oven temperature

» Speed control
- Accelerator to control speed.
» Power Supply
- PWM duty cycle to control voltage

» Servo control
> Pulse width to control output position

Integrating Examples

» Fluid level

- Valve filling slowly draining tank
- Swimming pool with evaporation

» Heading
- Steering wheel controlling direction

Tuning
» How to pick kP, ki, and kd?

» Trial and error
> Adjust kP till you get oscillations
- Back kP off by 25-50%
- Adjust kl to get good following
> Only use kD if nothing else works.

» Heuristic methods like Zeiggler Meyers
- Requires the ability to run specific tests and record data.

- Data is then processed to compute the kP, ki, and kD
terms.

- Often leads to aggressive tuning that must be tweaked.

Things to look out for

Symmetry
- Heat only temperature control vs Peltier cooler

v

Linear discontinuities
- May need different gains for different gears

v

v

Sensor placement
> Minimize dead time (latency)

Sensor accuracy, update rate, and noise
> You get what you pay for!

v

Control accuracy
- 8 bit PWM only gives you 256 steps.

v

Improvements

» Windup removal
o Limit | to some range.

» Lockouts

- Freeze loop when some known transient event
occurs like opening the oven door.

» Derivative filtering

- Add small filter to clean up error rate noise
- FiltErrorRate = k * FiltErrorRate + (1.0-k)*ErrorRate

Bumpless operation

» When setpoint changes, the error value will
change suddenly.

» This can cause a significant bump (shock) to
the system.

» SO we want to create a way to smooth over
the transition.

Bumpless calculations

®
4 CV] — e]*K + I]*Ki + e]*Kd

» e, = SP,-PV
>CV2=62K +|2K+e2 Kd
4 e2 — SP2 PV

» Want CV, = CV, when SP, -> SP,

o °
» e1><|<p+|]><|<i+e/><|{= e2><|<p+|2><|<i+e/’<v<

vl =1y + Ky /K * (SP,-SP,)

Example 1

» Wall following robot

» Sensor is an IR distance sensor
> Like a Sharp

» Control is the difference in motor speeds.
» This is an Integrating system

Example 2

» Motor speed control

» Sensor is an optical encoder (90 cpr)

» Speed control is via PWM (255 counts)
» This is a self regulating system

Example 2

» What is the settling time?
- Run step test and find about 1 second

» What should be the PID update rate?
> Settling time/(10 to 100) is 100ms to 10ms

Example 2

» How accurately can we measure speed?

- At full speed, each stripe goes by in 2.5ms
> Arduino micros gives answer to +- 4 usec
> This equates to a 0.16% error.

» How fast is our sensor update rate?
- At the low speed end each stripe takes 20ms!

» How accurately can we set speed

- At full speed we get 1600 deg/sec
- At full speed our PWM count is 255
- So each count is about 6.25 deg/sec

......
! \ \
\\\\\\
) AN

Example 2

» Can we guess what KP should be?
» Get speed at each PWM count

Speed vs PWM

1400
1200
1000

800

600

Speed (d/s)

400 y = 5.0445x - 23.373

200

~200 0 50 100 150 200 250 300
PWM (counts)

Example 2

» Swap axes to determine slope
> You need ~0.2 PWM counts per deg/sec
- That is a good place to start with KP!

PWM vs Speed

y =0.1981x + 4.6983

o
o

PWM (counts)

0 200 400 600 800 1000 1200 1400
Speed (d/s)

Demo

Questions?

