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Taking a Shower

» From your experience with your shower, you
pretty much know how your valve works to
control temperature.

» Most of the time you put the valve in pretty
much the right position on the first try.

» You only need a few nudges to get it just
right.




Adjustment

» You have an idea where to put the valve.

» You have an idea how much to adjust the
valve based on the temperature error.

» If you sense the temperature changing
quickly, you may adjust even faster.
- Hot water running out!

» When adjusting you need to account for the
distance from valve to shower head
> In my case it is about a 2.5 seconds lag




Caveats

» Varies due to
> Season (cold water is really cold in winter)
- Number of previous users

» All bets are off for the hotel shower!
> PID controllers are tuned to a specific system.




So what are you doing?

» Tgemanded The temperature you would like

) Tactual The temperature the shower actually is.

» Error = Tdemanded —Tactual

» Want to drive Error to zero by adjusting the faucet valve.

» Definitions:
> Setpoint What you want. T .mandeq iN this case.
> Process Variable What you have. T, in this case.
> Control Variable What you control. The valve in this case




My In-laws Shower

» There “Endless Hot Water” system allows the
temperature to oscillate significantly.
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Let’s Fix the Shower!

» Temperature sensor in shower head
» Servo to drive valve

» Human interface to set temperature
» Arduino to control the whole mess
» What could possibly go wrong?

» But how to write control algorithm?




PID as the control algorithm

» A very popular control system algorithm.
Often used in things like cruise controls,

autopilots, factory controls. Best used for
systems that are fairly linear.

» The name comes from
© Proportional

The Most Popular!
© |ntegral
o Differential

» Also P, I, D, PIl, PD, ID controllers




Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
valveAngle = - Some kind of magic

setValveAngle(valveAngle);
delay(period);




Proportional

Water Temp vs Valve Angle
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Proportional

» So a good initial guess is:

» Temp = 0.3967 * ValveAngle + 55.048
» ValveAngle = (Temp-55.048)/0.3967

» ValveAngle = 2.52*Temp - 138.8

» For every 1F temp change, you need to turn
the handle by about 2.52 degrees.




Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp; // Kp =2.5F/ValveDeg

analogWrite(P);
delay(period);




Can’t ever get there!

» If the error is O, then the valve is set to O.
> This makes the shower COLD!

» If the error is large, then the valve moves
towards hot.

» So you reach a steady state, but it is NOT the
temperature you want. ®




Integral

» The Integral term will tweak the solution.

> |If too warm make colder
> If too cold make warmer

» Each time we run through the loop, we will
add or subtract a bit to valveAngle to move

the valve in the right direction.

(In math, continuous adding is known as ‘taking the integral’)




Integral

» Compute the error
° B = Tdemanded —Tactual

» Now perform the ‘integral’

© | - | + E* KI, (Ki is a positive magic constant; more later)

» If we are too cold, T emanded > Tactual SO the error will be
positive.

» ‘I’ will increase each time the shower is too cold.
» ‘I’ will decrease each time the shower is too warm.
» ‘I’ will change more the worse the error is.




Software

loop(void)

{
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;
P = Error * Kp;

90% of time this is
o all you need!
| =1+ Error * Ki;

setValveAngle(P + I);
delay(period);




Differential

» Rarely used in practice.
- Error rate term is often very noisy

» Acts based on how fast the error is changing.

» Most often used to dampen the system
- Think of a car shock absorber.
- The K term will often be negative to oppose PI




Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;

ErrorRate = (LastError - Error);
P = Error * Kp;

I | + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;

setValveAngle(P + | + D);
delay(period);




Feed Forward

» Used when you have good system knowledge.

» If you can predict where the control should
ne, start there!

» Does not rely on having to wait for | to
integrate up.

» For the shower we have a good system
model.
> ValveAngle = 2.52*Temp - 138.8




Software

{

loop(void)
Actual = getTemp();
Demanded = getFromHumanq);
Error = Actual-Demanded;
ErrorRate = (LastError - Error);
P = Error * Kp;
| =1+ Error * Ki;

D = ErrorRate * Kd;
LastError = Error;
F = (Demanded * 2.52 - 138.9);

setValveAngle(P + | + D + F);
delay(period);




Software Considerations

» Must call the PID control loop at a regular

rate.
» Ensure that you limit variables to within legal
ranges.
- Limit P, I, D, F, and sum terms independently.
- P= ..

- P = constrain(P, lowP, highP);
- | = ...
- | = constain(l, lowl, highl);




When can they be used?

» When a control directly affects the output.
> Can’t control car speed by changing radio volume!

» When the system is monotonic and linear.

Not possible

Slope changes sign!

el L arge changes
in slope

10 15 20 25

Monotonic: Having the same sign slope



Dynamic Considerations

» How often to call the PID loop?
- How fast does the system respond?
- Blast furnace can run slower than Segway.
- How fast does sensor change?
> Rule of Thumb:

 Run the PID loop at about 10 to 100 times faster then
the settling time.




Settling Time

» The time it takes the natural system to return
to equilibrium after a disturbance.

- Shower: The time it takes for the water to move
from the valve to your skin and reheat the pipes.

> Cruise control: The time it takes the car to reach its

new speed when you make a sudden accelerator
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Types of Systems

» Self-regulating
> Kl is the key term for stability

» Integrating
- KP is the key term for stability




Self Regulating Samples

» Temperature control
- Gas flow to control oven temperature

» Speed control
- Accelerator to control speed.
» Power Supply
- PWM duty cycle to control voltage

» Servo control
> Pulse width to control output position




Integrating Examples

» Fluid level

- Valve filling slowly draining tank
- Swimming pool with evaporation

» Heading
- Steering wheel controlling direction




Tuning
» How to pick kP, ki, and kd?

» Trial and error
> Adjust kP till you get oscillations
- Back kP off by 25-50%
- Adjust kl to get good following
> Only use kD if nothing else works.

» Heuristic methods like Zeiggler Meyers
- Requires the ability to run specific tests and record data.

- Data is then processed to compute the kP, ki, and kD
terms.

- Often leads to aggressive tuning that must be tweaked.




Things to look out for

Symmetry
- Heat only temperature control vs Peltier cooler

v

Linear discontinuities
- May need different gains for different gears

v

v

Sensor placement
> Minimize dead time (latency)

Sensor accuracy, update rate, and noise
> You get what you pay for!

v

Control accuracy
- 8 bit PWM only gives you 256 steps.

v




Improvements

» Windup removal
o Limit | to some range.

» Lockouts

- Freeze loop when some known transient event
occurs like opening the oven door.

» Derivative filtering

- Add small filter to clean up error rate noise
- FiltErrorRate = k * FiltErrorRate + (1.0-k)*ErrorRate




Bumpless operation

» When setpoint changes, the error value will
change suddenly.

» This can cause a significant bump (shock) to
the system.

» SO we want to create a way to smooth over
the transition.




Bumpless calculations

®
4 CV] — e]*K + I]*Ki + e]*Kd

» e, = SP,-PV
>CV2=62K +|2K+e2 Kd
4 e2 — SP2 PV

» Want CV, = CV, when SP, -> SP,

o °
» e1><|<p+|]><|<i+e/><|{= e2><|<p+|2><|<i+e/’<v<

vl =1y + Ky /K * (SP,-SP,)




Example 1

» Wall following robot

» Sensor is an IR distance sensor
> Like a Sharp

» Control is the difference in motor speeds.
» This is an Integrating system




Example 2

» Motor speed control

» Sensor is an optical encoder (90 cpr)

» Speed control is via PWM (255 counts)
» This is a self regulating system




Example 2

» What is the settling time?
- Run step test and find about 1 second

» What should be the PID update rate?
> Settling time/(10 to 100) is 100ms to 10ms




Example 2

» How accurately can we measure speed?

- At full speed, each stripe goes by in 2.5ms
> Arduino micros gives answer to +- 4 usec
> This equates to a 0.16% error.

» How fast is our sensor update rate?
- At the low speed end each stripe takes 20ms!

» How accurately can we set speed

- At full speed we get 1600 deg/sec
- At full speed our PWM count is 255
- So each count is about 6.25 deg/sec
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Example 2

» Can we guess what KP should be?
» Get speed at each PWM count

Speed vs PWM
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Example 2

» Swap axes to determine slope
> You need ~0.2 PWM counts per deg/sec
- That is a good place to start with KP!

PWM vs Speed
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Demo




Questions?




