
Skye Sweeney
Skye@fll-freak.com

May 20 2017

 From your experience with your shower, you

pretty much know how your valve works to
control temperature.

 Most of the time you put the valve in pretty
much the right position on the first try.

 You only need a few nudges to get it just
right.

 You have an idea where to put the valve.

 You have an idea how much to adjust the
valve based on the temperature error.

 If you sense the temperature changing
quickly, you may adjust even faster.
◦ Hot water running out!

 When adjusting you need to account for the
distance from valve to shower head
◦ In my case it is about a 2.5 seconds lag

 Varies due to
◦ Season (cold water is really cold in winter)

◦ Number of previous users

 All bets are off for the hotel shower!
◦ PID controllers are tuned to a specific system.

 Tdemanded The temperature you would like

 Tactual The temperature the shower actually is.

 Error = Tdemanded - Tactual

 Want to drive Error to zero by adjusting the faucet valve.

 Definitions:
◦ Setpoint What you want. Tdemanded in this case.

◦ Process Variable What you have. Tactual in this case.

◦ Control Variable What you control. The valve in this case

 There “Endless Hot Water” system allows the
temperature to oscillate significantly.

40

50

60

70

80

90

100

110

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Temperature over time

Furnace Kicks on

Furnace Kicks off

 Temperature sensor in shower head

 Servo to drive valve

 Human interface to set temperature

 Arduino to control the whole mess

 What could possibly go wrong?

 But how to write control algorithm?

 A very popular control system algorithm.
Often used in things like cruise controls,
autopilots, factory controls. Best used for
systems that are fairly linear.

 The name comes from

◦Proportional

◦ Integral

◦Differential

 Also P, I, D, PI, PD, ID controllers

The Most Popular!

loop(void)

{
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

valveAngle =

setValveAngle(valveAngle);
delay(period);

}

Some kind of magic

y = 0.3967x + 55.048

40

50

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120 140 160 180

W
a
te

r
T
e
m

p

Valve Angle

Water Temp vs Valve Angle

Winter

Summer

Avg

Linear (Avg)

 So a good initial guess is:

 Temp = 0.3967 * ValveAngle + 55.048

 ValveAngle = (Temp–55.048)/0.3967

 ValveAngle = 2.52*Temp – 138.8

 For every 1F temp change, you need to turn
the handle by about 2.52 degrees.

loop(void)

{
Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp; // Kp ≅2.5F/ValveDeg

analogWrite(P);
delay(period);

}

 If the error is 0, then the valve is set to 0.
◦ This makes the shower COLD!

 If the error is large, then the valve moves
towards hot.

 So you reach a steady state, but it is NOT the
temperature you want.

 The Integral term will tweak the solution.
◦ If too warm make colder

◦ If too cold make warmer

 Each time we run through the loop, we will
add or subtract a bit to valveAngle to move
the valve in the right direction.

(In math, continuous adding is known as ‘taking the integral’)

 Compute the error
◦ E = Tdemanded - Tactual

 Now perform the ‘integral’
◦ I = I + E * Ki; (Ki is a positive magic constant; more later)

 If we are too cold, Tdemanded > Tactual so the error will be
positive.

 ‘I’ will increase each time the shower is too cold.

 ‘I’ will decrease each time the shower is too warm.

 ‘I’ will change more the worse the error is.

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;

P = Error * Kp;

I = I + Error * Ki;

setValveAngle(P + I);
delay(period);

}

90% of time this is
all you need!

 Rarely used in practice.
◦ Error rate term is often very noisy

 Acts based on how fast the error is changing.

 Most often used to dampen the system
◦ Think of a car shock absorber.

◦ The K term will often be negative to oppose PI

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
ErrorRate = (LastError – Error);

P = Error * Kp;
I = I + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;

setValveAngle(P + I + D);
delay(period);

}

 Used when you have good system knowledge.

 If you can predict where the control should
be, start there!

 Does not rely on having to wait for I to
integrate up.

 For the shower we have a good system
model.
◦ ValveAngle = 2.52*Temp – 138.8

loop(void)
{

Actual = getTemp();
Demanded = getFromHuman();
Error = Actual-Demanded;
ErrorRate = (LastError – Error);

P = Error * Kp;
I = I + Error * Ki;
D = ErrorRate * Kd;
LastError = Error;
F = (Demanded * 2.52 – 138.9);

setValveAngle(P + I + D + F);
delay(period);

}

 Must call the PID control loop at a regular
rate.

 Ensure that you limit variables to within legal
ranges.
◦ Limit P, I, D, F, and sum terms independently.

 P = …

 P = constrain(P, lowP, highP);

 I = …

 I = constain(I, lowI, highI);

 …

 When a control directly affects the output.
◦ Can’t control car speed by changing radio volume!

 When the system is monotonic and linear.

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Not possible

Large changes
in slope

Slope changes sign!

Monotonic: Having the same sign slope

 How often to call the PID loop?
◦ How fast does the system respond?

◦ Blast furnace can run slower than Segway.

◦ How fast does sensor change?

◦ Rule of Thumb:

 Run the PID loop at about 10 to 100 times faster then
the settling time.

 The time it takes the natural system to return
to equilibrium after a disturbance.
◦ Shower: The time it takes for the water to move

from the valve to your skin and reheat the pipes.

◦ Cruise control: The time it takes the car to reach its
new speed when you make a sudden accelerator
change.

 Self-regulating
◦ KI is the key term for stability

 Integrating
◦ KP is the key term for stability

 Temperature control
◦ Gas flow to control oven temperature

 Speed control
◦ Accelerator to control speed.

 Power Supply
◦ PWM duty cycle to control voltage

 Servo control
◦ Pulse width to control output position

 Fluid level
◦ Valve filling slowly draining tank

 Swimming pool with evaporation

 Heading
◦ Steering wheel controlling direction

 How to pick kP, kI, and kd?

 Trial and error
◦ Adjust kP till you get oscillations
◦ Back kP off by 25-50%
◦ Adjust kI to get good following
◦ Only use kD if nothing else works.

 Heuristic methods like Zeiggler Meyers
◦ Requires the ability to run specific tests and record data.
◦ Data is then processed to compute the kP, kI, and kD

terms.
◦ Often leads to aggressive tuning that must be tweaked.

 Symmetry
◦ Heat only temperature control vs Peltier cooler

 Linear discontinuities
◦ May need different gains for different gears

 Sensor placement
◦ Minimize dead time (latency)

 Sensor accuracy, update rate, and noise
◦ You get what you pay for!

 Control accuracy
◦ 8 bit PWM only gives you 256 steps.

 Windup removal
◦ Limit I to some range.

 Lockouts
◦ Freeze loop when some known transient event

occurs like opening the oven door.

 Derivative filtering
◦ Add small filter to clean up error rate noise

 FiltErrorRate = k * FiltErrorRate + (1.0-k)*ErrorRate

 When setpoint changes, the error value will
change suddenly.

 This can cause a significant bump (shock) to
the system.

 So we want to create a way to smooth over
the transition.

 CV1 = e1*Kp + I1*Ki + e1*Kd

 e1 = SP1-PV

 CV2 = e2*Kp + I2*Ki + e2 * Kd

 e2 = SP2-PV

 Want CV1 ≅ CV2 when SP1 -> SP2

 e1*Kp+I1*Ki+e1*Kd = e2*Kp+I2*Ki+e2*Kd

 I2 = I1 + Kp/Ki * (SP1-SP2)

● ●

●

●

 Wall following robot

 Sensor is an IR distance sensor
◦ Like a Sharp

 Control is the difference in motor speeds.

 This is an Integrating system

 Motor speed control

 Sensor is an optical encoder (90 cpr)

 Speed control is via PWM (255 counts)

 This is a self regulating system

 What is the settling time?
◦ Run step test and find about 1 second

 What should be the PID update rate?
◦ Settling time/(10 to 100) is 100ms to 10ms

 How accurately can we measure speed?
◦ At full speed, each stripe goes by in 2.5ms
◦ Arduino micros gives answer to +- 4 usec
◦ This equates to a 0.16% error.

 How fast is our sensor update rate?
◦ At the low speed end each stripe takes 20ms!

 How accurately can we set speed
◦ At full speed we get 1600 deg/sec
◦ At full speed our PWM count is 255
◦ So each count is about 6.25 deg/sec

 Can we guess what KP should be?

 Get speed at each PWM count

y = 5.0445x - 23.373

-200

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

S
p
e
e
d
 (

d
/
s
)

PWM (counts)

Speed vs PWM

 Swap axes to determine slope
◦ You need ~0.2 PWM counts per deg/sec

◦ That is a good place to start with KP!

y = 0.1981x + 4.6983

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

P
W

M
 (

c
o
u
n
ts

)

Speed (d/s)

PWM vs Speed

